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Abstract

After two decades of increasing popularity, sales of variable annuities (VAs) be-

gan to dwindle in 2013. Financial advisors have long argued against investing in

VAs due to the product’s high fees. VA providers charge these fees—typically at a

constant rate throughout the policy period—to cover their expenses and the costs of

the embedded guarantees, and lowering this constant fee rate could make the VA un-

profitable. Instead, we propose and analyze a simple change to the fee structure that

would lower overall fees (and thus make the product more attractive to investors)

without reducing the insurer’s profit. In fact, this time-dependent fee structure—

whereby the fee rate is reduced significantly only after a specified number of policy

years—can be Pareto-improving for both parties.

The key insight is that the new fee structure discourages policy exchanges (by

introducing an implicit cost), which reduces the insurer’s policy acquisition expenses.
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Taking into account financially optimal lapse (and reentry) decisions, we determine

the optimal timing and rate of the fee reduction for a competitive as well as for an

innovative VA provider. An important characteristic of this feature is that it can be

implemented easily and effectively to both new and existing VA policies.

Keywords: Variable annuities, pricing, GMDB, fees, commissions, surrender behavior.

1 Introduction

Over the past two decades, Variable Annuities (VAs) have developed into highly popular

long-term investment vehicles. In the U.S., these products combine the investment fea-

tures of mutual funds with favorable tax treatment and return guarantees (Hardy, 2003).

Recently, however, VA sales have started to dwindle. Since 2013, VA providers have expe-

rienced negative net sales,1 at an increasing rate. In fact, financial advisers have long tried

to steer consumers away from VAs, largely due to the high fees associated with the prod-

uct (see e.g. NASDAQ (2009); Kiplinger (2011); The Wall Street Journal (2012); Forbes

(2015), among many others).2

To counteract the recent decline in demand, VA providers need to find ways to make the

product more attractive to investors. Reducing their fees would appear to be an effective

way to accomplishing that. However, the reason for the high fees—which are typically

charged at a constant rate throughout the policy period—is a combination of large policy

acquisition expenses (e.g. commissions) and frequent policy lapses, which give providers

less time to recover their up-front expenses (Pinquet, Guillen, and Ayuso, 2011; Moenig

and Zhu, 2016). Therefore, simply reducing the constant fee rate is likely not a viable

option. Instead, we suggest that the solution to the provider’s demand problem could be a

change in the fee structure, whereby fees decline over time in order to reward and encourage

long-term participation in the policy.

1That is, investors are surrendering policies faster than new money is coming into the market. Source:
Insured Retirement Institute.

2Research shows that the tax benefits of VAs can outweigh these fees, but only in the long term
(Milevskya and Panyagometha, 2001; Moenig and Bauer, 2015; Moenig and Zhu, 2016).
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We implement a VA with a basic death benefit guarantee and a binary fee structure based

on a one-time fee reduction. We find that this simple time-dependent fee structure suffices

to effectively discourage policy lapses. This in turn lowers the insurer’s (per-year) expenses

and therefore the policyholder’s average annual fee—up to 35% (that is 8% of the total

premium) under our model specifications. Such a policy would be substantially more

attractive for potential investors. Moreover, we find that there is also a lot to gain for an

innovative VA provider willing to deviate from the current status-quo—a surplus of around

6% of the total premium, according to our model. That is, our proposed fee structure can

make both policyholder and insurer better off.

The policyholder’s incentive to lapse stems from the fact that the death benefit guarantee

commonly embedded in VAs (or any other typical VA guarantee, for that matter) resem-

bles a (conditional, long-term) put option on the VA account value, and therefore loses

in value if the account value increases. Since the policyholder continues to pay fees for

this now overvalued guarantee, he would benefit from lapsing the current VA policy and

immediately “re-entering” the market by purchasing the identical product. This would in-

crease the guaranteed amount to the current VA account value, without changing any of

the other contract parameters. Moenig and Zhu (2016) show that this “lapse-and-reentry”

strategy—known commonly as a 1035-exchange—is frequently optimal and persists even

in the presence of a typical VA surrender fee schedule. The strategy is quite costly, though,

since the policyholder’s market reentry constitutes the sale of a new policy. The result-

ing policy acquisition expenses are borne initially by the insurer—and (in anticipation)

apportioned to the policyholder in the form of a larger VA fee. As such, the costs of the

policy lapse do not have a direct effect on the policyholder’s decision making. In fact, the

frequency of lapses is a consequence of the fact that in the current VA market setting there

is often no cost to lapsing. Our proposed time-dependent fee structure changes that, as

lapsing the VA policy would result in (temporarily) foregoing the reduced fee rate.

A key feature of our proposed fee structure is that it is very easy to implement by VA

providers. It can be included in new VA products, but can also be assessed retroactively

on existing policies. In addition, policyholders should easily be able to understand the

new feature and realize that it is beneficial to them, and ultimately factor it into their
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lapse decision making. Given that our reduced fee leads to an improved outcome for both

the insurer and the policyholder, our proposal provides thus an immediate competitive

advantage to any insurer willing to adopt it. We thus believe that the proposed fee structure

could have a significant positive impact on the U.S. VA industry. In addition, the resulting

reduction in lapses is beneficial for various reasons not captured in our model: For instance,

policy surrenders complicate the hedging of the insurer’s financial risk exposure (Kling,

Ruez, and Ruß, 2014) and force the insurer to remain liquid at all times (Gollier, 2015;

Kuo, Tsai, and Chen, 2003).

Extensive research has been conducted on pricing VA guarantees and on modeling optimal

exercise by policyholders (see e.g., Milevsky and Posner (2001), Bauer, Kling, and Russ

(2008), Dai, Kuen Kwok, and Zong (2008), Bernard, MacKay, and Muehlbeyer (2014),

among many others.) The consensus is that policyholder behavior poses a tremendous

risk for VA providers. Our work builds on recent studies that analyze some specific VA

policy features regarding their effectiveness in mitigating incentives to surrender (MacKay,

Augustyniak, Bernard, and Hardy, 2015; Moenig and Zhu, 2016). One effective design to

reduce incentives to surrender is to include embedded ratchet options within the VA policy.

The idea is then to update the guaranteed level periodically throughout the life of the policy

so that the VA policy stays attractive even when the underlying fund value is large and the

maturity guaranteed level is too low in comparison (too deep out of the money guarantee).

But ratchet options are highly path-dependent and known to be difficult to hedge. Another

effective design is to adjust the constant fee to be paid over the years of the contract so

that it depends on market conditions. Such a state-dependent fee structure was proposed

in Bernard, Hardy, and MacKay (2013), where the fee is paid to the insurer only when the

account value is below a certain threshold (see also Delong (2014); Zhou and Wu (2015);

Moenig and Zhu (2016)). It is very effective in reducing lapse incentives. However, this

type of fee is controversial as it may give insurers incentives to maintain the fund below the

threshold to keep receiving fees, and thus does not give incentives to maximize the fund

value as they do not get any income when the fund is above the threshold. Furthermore,

this type of fee may also be subject to manipulation when the fund value is close to

the threshold due to the discontinuity in the fee structure that is directly related to the
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performance of the fund, which is managed by the VA provider. We see an advantage in

the time-dependent fee structure as it benefits all policyholders, not only those who already

enjoy a positive investment performance. In addition, the discontinuity in the payment of

the fee is driven by time and not subject to any manipulation, which makes it also a very

easy design to understand.

The remainder of this article is organized as follows. We begin by presenting a financial

model of a VA with a simple time-dependent fee structure. The two sections that follow

assess the benefits of this fee structure, first for an innovative insurer, then for a competitive

VA market where all insurers have adopted this fee structure. In particular, we discuss

the optimal amount by which the fee should be reduced and the optimal time at which to

reduce the fee. Lastly, we offer conclusions and ideas for future research.

2 VA Pricing Model with a Time-Dependent Fee Struc-

ture

We extend the lapse-and-reentry model of Moenig and Zhu (2016) by allowing the annual

VA fee to be time-dependent. We first recall here the assumptions made regarding the

financial market and present the VA contract that we will study throughout the paper. We

then provide details on the valuation procedures, from the perspective of both policyholder

and insurer. Lastly, we discuss our numerical implementation.

2.1 Model Setup

A typical VA policy consists of two phases. First, the policyholder makes one or more pay-

ments into a fund managed by the insurer until the maturity date T (accumulation phase).

Then, he receives income from the insurance company based on his accumulated account

value and possibly subject to some minimum guarantees (payout phase). Specifically, we

consider a single-premium VA policy whereby the policyholder invests an amount A0 with

an insurance company at time 0 but makes no further payments. The investment is placed
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in an equity fund whose evolution follows a Geometric Brownian motion:

dSt = µSt dt+ σ St dZt , S0 > 0 , (1)

with drift parameter µ and volatility σ, and where (Zt)t>0 follows a standard Brownian

motion.3 We denote the account value of the VA investment at time t by At. At maturity

(time T ), the insurer pays out the accumulated account value AT .4

As is common practice in the U.S., we include in the VA policy a return-of-premium GMDB

rider, a surrender fee schedule, and the right to lapse the policy during the accumulation

phase. Under the GMDB, the insurer guarantees to pay out the larger of the VA account

value At and a guaranteed amount Gt—beginning with the initial investment: G1 = A0—

upon the policyholder’s death. That is, if death occurs in the t-th policy year (for t ∈
{1, . . . , T}), the policyholder receives max{At, Gt} at time t, with At coming from his VA

account, while the remainder, max{Gt − At, 0}, is supplemented by the insurer.

The policyholder may lapse his VA contract on policy anniversary dates, that is at times

t = 1, 2, . . . , T − 1. Upon lapsing at time t, he receives the current VA account value net

of surrender fees, that is

Alapse
t := [1− s(mt)]At ,

where mt denotes the time (in years) since inception of the current VA policy (that is, since

his most recent policy lapse), and s(mt) is the applicable surrender fee after mt contract

years. For instance, if the policyholder lapses for the first time at time t, we have mt = t,

and mt+1 = 1. Further, we let ns denote the length of the surrender schedule, that is the

3This setting is the well-known Black-Scholes model. In our numerical implementation we take advan-
tage of its simplicity. We are aware of its limitations in reflecting empirical stock returns—however, we
believe that the impact of applying more sophisticated financial models (accounting, e.g., for stochastic
volatility and stochastic interest rates) would have merely a second-order effect relative to the policyholder
behavior we study in this article (see Kling, Ruez, and Ruß (2014)).

4Whether this occurs as a lump sum payout or in the form of an annuity stream is immaterial to our
model since both have the same present value AT at time T .
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number of initial contract years in which there is a positive surrender fee:

ns = min
n∈N
{s(n) = 0} .

Following the lapse, the policyholder immediately reinvests the amount Alapse
t into an iden-

tical product (same insurer, same year of maturity); as a result, the guaranteed amount

for this new policy will also be equal to Alapse
t , and the surrender fee schedule starts over:

Gt+1 = Alapse
t and mt+1 = 1 .

The insurer incurs two types of expenses: a policy acquisition expense (at rate εini) that

is assessed at the beginning of the policy—including the policyholder’s market reentry

following a lapse—and that accounts for commissions, marketing, and administrative costs;

and recurring expenses (at rate εrec), which are assessed at the beginning of each year

during the accumulation phase. Both expense rates are determined in proportion to the

VA account value at the time.

To cover its costs for expenses and the GMDB rider, the insurer charges a recurring fee at

annual rate φmt , assessed continuously and in proportion to the current VA account value

At at time t. The fee is taken directly out of the VA account. In the U.S. VA market, φmt

is typically independent of mt. By contrast, we propose the following time-dependent fee:

φmt =

φini , mt < nred

φred , mt > nred

(2)

where φini, φred, and nred are all specified in the VA contract. nred denotes the number of

policy years after which the fee is reduced. For simplicity, let φ̂ denote the three-dimensional

vector containing the policy’s fee information:

φ̂ = [φini, φred, nred]. (3)

Lastly, and in line with the actuarial literature in this context, we assume independence
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between financial market risk and individual mortality risk. Specifically, we define the

probability measure Q as the product measure of the risk-neutral measure for financial

risk and the real-world measure for (idiosyncratic) mortality risk, while P is the product

measure of the real-world measures for both financial and mortality risk. Regarding the

latter, we let qx denote the probability that a person age x dies within the following year,

while px = 1−qx represents the probability that an x-year old policyholder survives another

year.

Our work builds on the lapse-and-reentry model developed by Moenig and Zhu (2016). In

this paper, the authors show that the policyholder’s optimal behavior is largely driven by

value maximization, and unaffected by tax considerations and market incompleteness. This

value-maximization approach is in line with most of the existing literature on policyholder

behavior in VAs (see e.g. Milevsky and Salisbury (2001); Bauer, Kling, and Russ (2008);

Bernard, MacKay, and Muehlbeyer (2014)); however, it is important to account for the

relevant market frictions (in this case, the policy acquisition expenses) in order to reconcile

the model with typical market prices. Moreover, Moenig and Zhu (2016) are able to

justify consumer participation once they include proper tax treatments and individual risk

preferences in their model. These results naturally extend to our approach and justify our

use of value maximization as an appropriate methodology for the policyholder.

2.2 Optimal Lapse-and-Reentry

We assume that the policyholder maximizes the value of his VA policy in that his lapse

decision at each policy anniversary date serves to maximize the market value of his invest-

ment (expressed as a risk-neutral expected value under Q). This market value depends on

the current account value At, the guaranteed amount Gt, and the time mt since inception

of the current VA policy (mt is an integer value that denotes the number of full years into

the policy). Note that the latter impacts both the potential time-t surrender fee s(mt) and

the VA fee rate φmt for the coming year. For integer values of t, and assuming that the

policyholder is still alive at time t, we denote by Vt(At, Gt,mt) the market value of the VA

policy immediately prior to the policyholder’s time-t lapse decision.
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For notational convenience we first define the intermediary function

Ṽt(At, Gt+1,mt) = qx+t
[
At e

−φmt + Put(At, Gt+1, φmt)
]

+ (1− qx+t) e−rEQ
t [Vt+1(At+1, Gt+1, 1 +mt)] ,

where the VA fee rate φmt is determined by Equation (2), EQ
t [.] denotes the expected value—

under the measure Q—based on the information available at time t, the VA account value

is updated according to

At+1 = At exp
[
r − φmt − 1

2
σ2 + σ (Zt+1 − Zt)

]
,

Zt+1 − Zt ∼ N (0, 1) ,
(4)

and where we denote by Put(S0, K, φ) the Black-Scholes price of a one-year put option

with current stock price S0, strike price K, and dividend yield φ:

Put(S0, K, φ) = K e−rN (−d2)− S0 e
−φN (−d1) ,with

d1 =
ln(S0K )+

(
r−φ+σ2

2

)
σ

and d2 = d1 − σ.
(5)

In particular, we take advantage of the fact that the dividend yield has the same impact

on the stock price as the continuously deducted fee rate φmt has on the VA account value

At.

If the policyholder lapses at time t, the state variables are set to At = Alapse
t , Gt = Alapse

t ,

and mt = 0. The policyholder will lapse if and only if the VA value upon lapse-and-reentry,

defined by

V lapse
t (At, Gt,mt) = Ṽt

(
Alapse
t , Alapse

t , 0
)
,

exceeds the continuation value of the policy, defined by

V cont
t (At, Gt,mt) = Ṽt(At, Gt,mt) .
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. The implicit value of the VA policy is then given by the larger of the two values:

Vt(At, Gt,mt) = max
{
V cont
t (At, Gt,mt), V

lapse
t (At, Gt,mt)

}
.

The resulting dynamic optimization problem can be solved recursively using the terminal

condition

VT (AT , GT ,mT ) = [1− s(mT )]AT . (6)

Ultimately (by slight abuse of notation) as

V0 := Ṽ0(A0, A0, 0) . (7)

V0 constitutes the expected present value of the VA policy to the policyholder.

2.3 Insurer’s Valuation

By contrast, the initial net present value of a VA policy to the insurer is given by:

NPV0 = NPV0(φ̂) = A0 − V0 − EPV E0 , (8)

where V0 is given by (7) and EPV E0 denote the time-0 expected present values of ex-

penses. Note that both V0 and EPV E0 also depend on φ̂ (defined in (3)) but we omit this

dependence for the ease of presentation.

To compute EPV E0, we proceed recursively as follows. For integer values of t, we let

EPV Et(At, Gt,mt) denote the time-t expected present values of all expense payouts from

time t forward. To compute EPV Et(At, Gt,mt), we then define the following intermediary

function:

ẼPV Et(At, Gt+1,mt, ε) = εAt + (1− qx+t) e−rEQ
t [EPV Et+1 (At+1, Gt+1, 1 +mt)] .

Here, ε refers to the applicable expense rate for the upcoming year. The recursion procedure
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has terminal condition

EPV ET (AT , GT ,mT ) = 0 .

From there, we proceed recursively for times t = T − 1, T − 2, . . . , 1 and for given At, Gt,

mt to define

EPV Et(At, Gt,mt) =



ẼPV Et

(
Alapse
t , Alapse

t , 0, εini + εrec

)
,

if V lapse
t (At, Gt,mt) > V cont

t (At, Gt,mt)

ẼPV Et (At, Gt,mt, εrec) ,

if V lapse
t (At, Gt,mt) 6 V cont

t (At, Gt,mt)

(9)

Ultimately, we find the desired quantity EPV E0, as a function of the VA fee structure:

EPV E0 = ẼPV E0 (A0, A0, 0, εini + εrec) .

2.4 Expected Number of Policy Lapses

We can determine the expected number of lapses (under the real-world measure P) in

similar fashion. Thereby, Lt(At, Gt,mt) denotes the expected number of dates over the

period [t, T ) at which it is optimal for the policyholder to lapse, given the time-t state of

the VA policy. The terminal condition is

LT (AT , GT ,mT ) = 0 .

For future reference we first define the intermediary function

L̃t(At, Gt+1,mt) = (1− qx+t)EP
t [Lt+1(At+1, Gt+1, 1 +mt)] ,

subject to the dynamics for the VA account value under the measure P (that is, Equation

(4), but replacing r with µ). We can then find the expected number of lapses recursively
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for all times and state variables as

Lt(At, Gt,mt) =



1 + L̃t

(
Alapse
t , Alapse

t , 0
)
,

if V lapse
t (At, Gt,mt) > V cont

t (At, Gt,mt)

L̃t (At, Gt,mt) ,

if V lapse
t (At, Gt,mt) 6 V cont

t (At, Gt,mt)

(10)

Proceeding recursively we find the time-0 expected number of policy lapses L0 as

L0 = L̃0 (A0, A0, 0) .

2.5 Numerical Analysis

We use recursive dynamic programming to implement the policyholder’s optimal control

problem along with the insurer’s policy valuation and lapse calculations described above.

Our state space consists of variables At, Gt, and mt, for time t = T, T − 1, . . . , 0. For

details, we refer to Moenig and Zhu (2016).

For our numerical analysis of the VA policy and time-dependent fee structure we follow

the base-case parameter specifications of Moenig and Zhu (2016), which are summarized

in Table 1. That is, we consider an investor who is age 55 and who invests $100,000 into a

VA policy that is set to mature at age 80. The investor’s mortality follows the 2012 IAM

basic male mortality table. The policy includes a 7-year surrender schedule. We assume

a 3% risk-free rate of return, an 8% expected return and 20% annual volatility for the

underlying asset, and expenses of 7% of the face amount for policy acquisitions and 0.4%

for annually recurring expenses. These expenses are typical for the U.S. VA industry.
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Table 1: Parameter Values.

Description Parameter Values

Initial VA investment ($) A0 100,000

Age at inception (years) x 55

Time to maturity (years) T 25

Surrender fees s(mt) 7%, 6%, . . . , 1%, 0, 0, . . .

Risk-free rate r 3%

Expected growth rate of investment µ 8%

Volatility of investment σ 20%

Policy acquisition expense εini 7%

Recurring expense rate εrec 0.4%

3 Benefits to an Innovative VA Provider

We first consider the current status-quo of the U.S.VA market—that is, a time-invariant fee

rate—and explore the financial benefits to an insurance company who (solely) innovates by

reducing the fee from the initial rate φini to the lower rate φred, starting after nred contract

years (as described by (2)).

Consistent with Moenig and Zhu (2016) we find that under the current market conditions—

and accounting for optimal lapse-and-reentry behavior by the policyholder—the insurer

breaks even at a (constant) fee rate of 150.7 bps. We therefore assume in this section

that the insurer charges an initial fee rate φini = 150.7 bps, in line with its competitors.

However, the innovative company decides to reduce the fee rate to φred after nred contract

years, so as to maximize its discounted expected profit from this policy. That is, in this

section we fix φini (at 150.7 bps) and explore combinations of φred and nred in order to

maximize NPV0, as specified in Equation (8).

Clearly, ceteris paribus, the policyholder would welcome such a fee reduction. In addition,
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we find that the insurer can benefit quite substantially from this strategy as well. Figure 1

displays the insurer’s profit as a function of φred and for selected values of nred, while Table

2 provides the corresponding insights numerically.

Figure 1: Time-0 net present value (NPV0) to the innovative insurer, as a function of φred

and for different dates nred of implementation of the reduced fee rate.
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Note: The insurer’s net present value is calculated in expected present value terms under
the measure Q (see Equation (8)) and is based on φini = 150.7 bps as well as on the
parameters displayed in Table 1.

Both Table 2 and Figure 1 show that when reducing the fee rate to φred = 47.4 bps after

18 years, the insurer can attain a maximum expected profit of $6,170 over the 25-year

policy period, that is over 6% of the initial investment. At the same time, the policy

value increases from $77,340 to $78,980. And even if the insurer wanted to reduce the fee

sooner (e.g. to 89.4 bps after 10 policy years) in order to make the new product potentially

more enticing for a policyholder (V0 increases to $80,450), the company would still make
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a substantial profit ($4,520 in this case). As a result, both insurer and policyholder would

be significantly better off under this time-dependent fee structure.

Table 2: Valuation and Lapse Statistics with Innovative Insurer.

no red. nred

4 7 10 14 18 21

φ∗red (bps) 150.7 150.7 93.2 89.4 80.3 47.4 0.1

NPV ∗0 ($) 0 0 3,600 4,520 5,680 6,170 3,250

V0 ($) 77,340 77,340 81,290 80,450 79,420 78,980 78,330

EPV E0 ($) 22,660 22,660 15,110 15,030 14,500 14,850 18,420

L0 1.45 1.45 0.04 0.04 0.02 0.02 0.72

Note: For select values of nred, the table depicts the optimal reduced fee rate φ∗red and
corresponding maximum profit to the innovative insurer (NPV ∗0 ). It also shows the cor-
responding policy value V0, expected expense payment EPV E0, and average number of
lapses L0. Results are based on the parameter values from Table 1 and an initial fee rate
φini = 150.7 bps. Lapses are assessed under the measure P, all other values are computed
under the measure Q.

The reason for this mutual improvement can be seen in the last two rows of Table 2. We

observe that EPV E0 is significantly reduced in the new policy design, and that the average

number of lapses L0 is reduced as well. Figure 2 illustrates further the effect of φred on

the number of lapses. The opportunity to pay a reduced fee rate after a certain number of

contract years makes the current policy more attractive relative to starting a new policy.

This observation shows that there is a hidden cost on policy lapses for policyholders and

insurers. Under the current VA market structure the policyholder seems to not really face

the most significant cost associated with his policy lapse as the new policy acquisition

expenses upon his market reentry (7% of the investment amount at the time) are borne

entirely by the VA provider. They are only recovered later in time through the fixed fee

percentage taken from the account value—provided that the policyholder maintains the

policy for a long period of time. Therefore, the insurer benefits immediately from reduced
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expenses when the policyholder chooses to lapse less frequently. The fee reduction makes

the policyholder face some immediate cost of lapsing as the fee would be increased if he were

to lapse and re-enter. In fact, according to Table 2, even if the fee reduction were to take

effect only very late in the contract period (e.g. after 18 years), the prospect of a lower fee

rate makes lapsing financially optimal only 0.02 times on average over the 25-year period—

compared to 1.45 lapses without the fee reduction. This reduces the overall expenses by

more than a third ($14,850 for nred = 18 versus $22,660 without the fee reduction, see row

EPV E0 in Table 2).

Figure 2: Average number of policy lapses (L0) under the innovative insurer.
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Note: Lapse rates are calculated under the measure P and are based on φini = 150.7 bps
as well as on the parameter values displayed in Table 1.

We can see from Figure 2 that reducing φred (below φini that is equal to 150.7 bps) leads to

a substantial reduction in the lapse rate, and thus a substantial reduction in the insurer’s
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expense payments. Reducing φred from φini to φ∗red drives up the insurer’s expected profit

(see Figure 1).

As we continue to reduce φred below φ∗red, the insurer’s profit (NPV0) keeps rising. However,

at a certain point the lapse rate reaches approximately zero and further reducing φred will

not have an impact on the policyholder’s lapse behavior and thus on the insurer’s expenses,

but only cause the policyholder’s fee payments (and thus the insurer’s profit) to decline.

This is the reason why we find that a moderate reduction in the fee rate is optimal from

the insurer’s perspective.

The insurer’s implicit trade-off between reducing its acquisition expenses (by lowering lapse

incentives) and maintaining its fee income is also reflected in its optimal choice of nred. On

the one hand, delaying the start of the fee reduction increases the policyholder’s overall

fee payments; on the other hand it may make him more likely to lapse and reenter. Since

the surrender fee sufficiently disincentivizes lapsing during the first seven contract years,5

there are no reasons for the insurer to choose nred < 7. In those cases, we indeed observe

no improvement in lapse rates but only a reduction in profit (see the example of nred = 4 in

Table 2 and Figure 2). To the contrary: the insurer benefits from delaying the fee reduction

for several years after the surrender schedule ends, as this will allow him to collect more

fees without causing a meaningful increase in lapses (note, for instance, that for φred ≈ 45

bps, lapsing is never optimal for most values of nred). The policyholder, on the other hand,

would of course prefer—ceteris paribus—that the fee is reduced as early as possible.

These results demonstrate that any VA provider stands to benefit tremendously from of-

fering this simple, time-dependent fee structure—not only because that would increase the

company’s per-policy profit, but also because it would make the product more attractive

to investors and thus lead to an increased demand. Thereby, a major advantage of this

simple adjustment to the VA fee structure is that it can also be applied to existing poli-

cies, where it may have an immediate positive impact on the financial bottom line of the

5See Figure 3 of Moenig and Zhu (2016): under the constant-fee structure, lapsing is never optimal
during the first 7 contract years, where the policyholder faces a positive surrender fee. However, at time
t = 7—when the surrender fee does not apply any longer—the policyholder should lapse in more than half
of all financial scenarios.
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VA provider: the (prospect of a) reduced fee rate lowers policyholders’ incentives to lapse

their VA policy and saves the insurer from paying new policy acquisition expenses. We

also find that this applies not only to the standard death benefit rider, but also to living

benefit guarantees, as we demonstrate in Appendix A for the case of an added Guaranteed

Minimum Accumulation Benefit (GMAB) rider.

While our proposed fee structure may offer substantial benefits to an innovative VA

provider, the company may not be able to take advantage of them for long. Once other

insurers see the value in this new fee structure, they will likely follow suit. Therefore, we

explore in the following section what this time-dependent fee structure will lead to in a

competitive market environment.

4 Optimal Time-Dependent Fee Structure in a Com-

petitive Market

Initially, an innovative VA provider may want to modify the current market fee structure

merely by offering a fee reduction (from φini to φ∗red, beginning after a specified number

nred of years under contract), but leave the initial fee rate φini unchanged at the current

market level. This makes the product easily marketable as it offers the policyholder an

unambiguous improvement (in a first-order stochastic dominance sense) over existing VA

policies. Given the simplicity of implementation and the relative magnitude of the financial

benefits to the innovative insurer, this simple one-time reduction of the VA fee rate appears

to be a very attractive first step in the deviation from the current market status-quo, as

demonstrated in Section 3.

As investors transition to the innovative VA provider, the other companies in the market

will start to offer similar policies. In an effort to regain market share and increase overall

profits, companies will want to further reduce φred to attract investors, at the expense of

per-policy surplus. Eventually, providers may also alter the initial fee rate φini (in addition

to φred and nred).
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In this section we assume that the VA market is competitive on the provider side. This

condition imposes a zero-profit restriction for the insurers. As a result, policies are “opti-

mized” (over the fee structure φ̂ ) to provide the largest policy value (i.e. highest market

value computed as the risk-neutral expected present value, V0) to the investor, subject to

the constraint that NPV0(φ̂) = 0.

Relating the Fee Rates

In fact, for a given combination of φred and nred—and taking into account the resulting

optimal policyholder lapse-and-reentry behavior—the zero-profit restriction on the insurer

uniquely specifies a value for φini. This relationship is demonstrated in Figure 3.

As before, when we impose a constant fee rate (that is, when φred is set to equal φini),

the break-even fee rate is approximately 150.7 bps. In most cases displayed in Figure 3—

specifically, for nred > 7— lowering φred (moderately) would allow the insurer to also reduce

φini (but to a lesser degree) while still breaking even in expectation. This observation is

a consequence of a simultaneous reduction in the frequency of policy lapses, as shown in

Figure 4. This graph also confirms our intuitive insight that lapsing becomes increasingly

suboptimal as φred is reduced to 0. In particular—while L0 may never be exactly equal to

0 in theory, as there always exist sufficiently large values of At for which it is optimal to

lapse—we can define a threshold φ̄red as the largest value of φred for which there are almost

no lapses:

φ̄red := max{φred | L0 < 0.005} .

We find that under our model specifications such a threshold exists (that is, has a positive

value) for every nred 6 18.

Here, as it was the case with an innovative VA provider, a reduction in the lapse rate (due

to a reduced φred) lowers the insurer’s overall policy acquisition expenses, and for moderate

reductions in φred (that is, such that φred remains above φ̄red), these savings evidently exceed

the insurer’s reduction in income caused by the lower fee rate. Contrary to our analysis

in the previous section, and due to the zero-profit restriction imposed here on the insurer,
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Figure 3: Relation of Break-Even Fee Rates (in bps) in Competitive Market.
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Note: The insurer’s net present value is calculated in expected present value terms under
the measure Q (see Equation (8)) and is based on φini = 150.7 bps as well as on the
parameters displayed in Table 1.
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this net benefit is now also passed on to the policyholder, and manifests in the form of a

lower initial fee rate φini.
6 However, reducing φred below φ̄red has no additional effect on

lapse behavior (and thus acquisition expenses), so that the insurer would need to increase

φini in order to compensate for the reduced income in the later policy years.

Figure 4: Average Number of Policy Lapses in a Competitive Market.
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Note: Lapses are determined under P and are based on φini from Figure 3.

Impact on Policy Value

In a competitive market environment where all “savings” are passed on to the policyholder,

it is logical that the policy value is highest when expenses are lowest. As Figure 5 shows,

for all values of nred this occurs when φred = 0 as the policy value is a strictly decreasing

function of φred. Thereby, the graphs in Figure 5 consist of two parts. As discussed earlier,

6On the other hand, if the fee is reduced sooner—see the cases of nred = 1 and nred = 4 in Figure
3—the insurer’s loss of fee income outweighs its gain from the reduced lapsing. As a result, φini must be
increased so that the insurer continues to break even in expectation.
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reducing φred (from the original 150.7 bps) leads to a reduction in the policy lapse rate,

a resulting reduction in φini, and thus a significant increase in the policy value V0. This

applies as we keep reducing φred until it reaches the threshold φ̄red. From there on, the

benefits to the policyholder from further reducing φred are significantly smaller, as they are

largely offset by the necessary increase in φini (see Figure 3). Nonetheless, to maximize the

policy value, φred should be reduced all the way to 0.

The key insight here is that front-loading fee payments reduces the VA account value in

the early years of the policy—while allowing the account value to catch up over time (due

to lower fee rates in later policy years) compared to the case where the fee is spread out

relatively more evenly over the policy period. Therefore, in the absence of lapses, at any

given time the account value will be lower under the front-loaded free structure. Since in our

model the insurer’s expenses are assessed annually in proportion to the VA account value

at the time, front-loading fees reduces the overall expense payments and thus increases the

policy value. This explains why the policy value V0 keeps increasing as φred is reduced

below φ̄red, and also suggests (accurately) that V0 should be larger for lower values of nred.

The valuation results displayed in Table 3 confirm these insights. Therefore, the theoreti-

cally optimal fee structure in a competitive market—based on our model specifications—is

the one where nred = 1 and φred = 0, that is when all fees are front-loaded. This raises the

policy value to $85,470, which constitutes an increase of $8,130 or 10.5% compared to the

current status quo in the U.S. VA market.

However, this fee structure imposes a very large up-front fee on the policyholder (around

20% of the initial investment) and may therefore be optimal in theory but not necessarily

from a marketing perspective. In particular—and aside from the emotional impact of

agreeing to see 20% of your money vanish—can the average policyholder (or us without

Matlab) tell whether this up-front fee structure is in any way preferable to the current

150.7 bps flat fee rate? Moreover, it is worth noting that the change in the policy value V0

when φred < φ̄red is driven only by the insurer’s annually recurring expenses. Considering

that in practice, some of these annually recurring expenses may actually be fixed rather
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Figure 5: Policy Value in a Competitive Market.
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Note: The insurer’s net present value is calculated in expected present value terms under
the measure Q (see Equation (8)) and is based on φini = 150.7 bps as well as on the
parameters displayed in Table 1.
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Table 3: Optimal Fee Structure and Valuation Statistics for a Competitive Market.

no red. nred

1 4 7 10 14 18

(a) Maximize V0 s.t. NPV0 = 0 :

φ∗ini (bps) 150.7 2,001.2 504.8 291.5 206.5 150.3 119.4

φ∗red (bps) 150.7 0.0 0.0 0.00 0.0 0.0 0.0

V0 ($) 77,340 85,470 85,380 85,280 85,190 85,070 84,950

EPV E0 ($) 22,660 14,530 14,620 14,720 14,810 14,930 15,050

L0 1.45 0.00 0.00 0.00 0.00 0.00 0.00

(b) φred = φ̄red and NPV0 = 0 :

φini (bps) 150.7 454.5 176.3 133.8 126.8 118.9 116.7

φ̄red (bps) 150.7 73.3 71.5 70.7 61.8 47.1 8.4

V0 ($) 77,340 84,840 84,880 84,870 84,890 84,910 84,930

EPV E0 ($) 22,660 15,160 15,120 15,130 15,110 15,090 15,070

L0 1.45 0.00 0.00 0.00 0.00 0.00 0.00

Note: The table depicts fee rates and valuation statistics in a competitive market environ-
ment for various values of nred, under two distinct constraints: (a) considers the optimal fee
rates (φini, φred) that maximize the policy value V0, while (b) imposes that φred = φ̄red, the
largest possible rate for the reduced fee such that the expected number of lapses L0 < 0.005.
In both cases, the competitive nature of this market implies the additional constraint that
NPV0 = 0, which uniquely determines the value of φini(see Figure 3. The table also shows
the expected expense payment EPV E0. Results are based on the parameter values from
Table 1. Lapses are assessed under the measure P, all other values are computed under
the measure Q.
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than proportional to the VA account value,7 the policyholder would likely benefit even less

from a reduction of φred below φ̄red than Figure 5 and Table 3 suggest. In contrast, this

would have very little effect on the shape of the graphs in Figure 5 where φred > φ̄red, since

there the change in the policy value is driven primarily by the drop in policy acquisition

expenses resulting from a reduction in the frequency of lapses (as φred is reduced).

As a result, while front-loading all fees may be optimal in theory, policyholders can extract

the vast majority of potential benefits from the VA with any fee structure that sufficiently

dis-incentivizes lapsing. And as part (b) of Table 3 shows, such a product can have much

more moderate fee rates. For instance, the policyholder may pay an initial fee rate of 133.8

bps, which is reduced to 70.7 bps after 7 years. Under this fee structure, the policy value

is only $600 (that is, around 0.7%) less—at most—than under complete front-loading, but

$7,530 (that is, around 9.7%) higher than under the current VA market status-quo. In

addition, the fee is at all times significantly below the status-quo flat rate of 150.7 bps,

which makes the benefits apparent to any policyholder.

5 Concluding Remarks

The goal of this paper is to explore the impact of the fee structure of VA contracts on the

policyholders’ decision to lapse. We find that a simple one-time fee reduction can offer

sizeable disincentives to lapsing, and consequently makes the VA policy more interesting

to both policyholder and insurer. For policyholders, the new design offers lower fee rates

without compromising on any of the benefits and opportunities that make VAs an attrac-

tive investment in the first place. For VA providers, the proposed fee structure increases

customer retention and considerably reduces acquisition expenses from “1035 exchanges.”

Furthermore, this one-time fee reduction is straightforward to implement and can be added

simultaneously to new and existing VA policies. An innovative insurer would thus have

immediate benefits. Therefore, we anticipate that our study could have a significant impact

on the U.S. VA industry.

7Our model can easily be adjusted to account for the insurer’s fixed expenses, namely by setting the
“profit” (NPV0) to equal these fixed expenses and reducing εrec accordingly.
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Insurers can employ other VA policy features to mitigate lapse incentives. As noted for

instance by Moenig and Zhu (2016), a ratchet-style guarantee and a state-dependent fee

structure can be similarly effective in that regard. However, our proposed time-dependent

fee structure may be preferable to either of these features for reasons beyond the consid-

eration of our model. Indeed, one of the criticisms of the state-dependent fee (i.e. a fee

that is reduced when the underlying fund is beyond some threshold) is that it only ben-

efits policyholders whose investments have performed well, while policyholders with low

account values will not have any reduced fees. In addition, the state-dependent fee design

may lead to manipulation risk by creating incentives for insurers to keep the fund below

some threshold. By contrast, the time-dependent fee structure that we are proposing is

applied equally to all policyholders, regardless of investment performance. Also, a major

disadvantage of ratchet-type guarantees in actuarial practice is that they are highly path-

dependent and therefore difficult to hedge for insurers. Our proposed design, on the other

hand, does not complicate the hedging of the guarantee. On the contrary, since frequent

policy lapses interfere with the insurer’s ability to hedge (see Kling, Ruez, and Ruß (2014)),

the time-dependent fee structure could improve the hedging efficiency of the VA product.

By causing fewer policy lapses, the time-dependent fee structure would allow VA providers

to increase their investment horizon. Gollier (2015) notes that it is beneficial to the pros-

perity of a country if pension funds and life insurers can invest in illiquid, long-term assets,

and thereby contribute to the growth of the economy. This would also have additional

benefits to the policyholder, as these assets offer a higher rate of return (see e.g. Huberman

and Halka (2001); Browne, Milevsky, and Salisbury (2003); Ben-Rephael, Kadan, and Wohl

(2015)); in addition, long-term stock investments benefit from a lower annual volatility due

to the negative auto-correlation of stock returns (Campbell and Viceira, 2002; Bansal and

Yaron, 2004). We leave the assessment and inclusion of these benefits for future research.

Finally, the model employed in this article considers VA policy exchanges in order to

improve the value of the GMDB rider. However, we suspect that the insights provided

here carry over to other VA guarantees, including e.g. lifetime withdrawal benefits. Indeed,

the time-dependent fee applies during the accumulation period for guarantees that start

after this accumulation period, which is common for most guarantees in VAs. Whether a
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time-dependent fee structure can indeed impact lapses in an equally significant way under

more complex guarantees constitutes another interesting avenue for future research.
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A Adding a Living Benefit Guarantee

As a robustness check for our proposed fee structure we consider the case where the insurer

adds a living benefit guarantee to the VA+GMDB policy. For simplicity, we assume this

to be a return-of-premium Guaranteed Minimum Accumulation Benefit (GMAB) rider. It

ensures the policyholder that he will receive the larger of the VA account value and the

guaranteed amount when the policy matures at time T—that is, max{AT , GT}—provided

that he is still alive at the time. Thereby, the guaranteed amount is the same as for the

corresponding GMDB rider.
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Figure 6: NPV and lapse rates with innovative insurer and living benefit guarantee.
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Note: NPV0 is calculated in expected present value terms under the measure Q (see Equation

(8)), and L0 is calculated under the measure P. Both quantities are based on φini = 244.4 bps as

well as on the parameters displayed in Table 1 (with the exception that σ = 15%).

We reflect the addition of the GMAB in the policyholder’s optimization problem by re-

placing the terminal condition of Equation (6) with

VT (AT , GT ,mT ) = [1− s(mT )] max{AT , GT} .

For our numerical implementation, we again rely on the parameter specifications of Table

1, with the exception of the investment volatility σ. In U.S. VAs it is common practice

for insurers to restrict the policyholder’s investment choices if she elects to add on a living

benefit guarantee. The purpose is to limit the equity exposure of the VA account value in

order to reduce the insurer’s risk and thus also the value of the guarantee. Therefore, we

assume a reduction in equity exposure to 75% of the benchmark case (σ = 20%), so that

the VA account volatility in the presence of the GMAB is σ = 15%. Valuation and lapse

statistics are displayed in Table 4 and Figure 6.

In particular, we observe that in the standard case (without fee reduction), the addition of
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Table 4: Valuation and Lapse Statistics With Living Benefit Guarantee.

no red. nred

7 10 13 16

φ∗red (bps) 244.4 244.4 47.0 0 0

NPV ∗0 ($) 0 0 3,120 3,820 1,370

V0 ($) 77,490 77,490 82,060 81,620 78,930

EPV E0 ($) 22,510 22,510 14,820 14,560 19,700

L0 2.58 2.58 0.19 0.13 2.04

Note: For select values of nred, the table depicts the optimal reduced fee rate φ∗red and corre-

sponding maximum profit to the innovative insurer (NPV ∗0 ). It also shows the corresponding

policy value V0, expected expense payment EPV E0, and average number of lapses L0. Results

are based on the parameter values from Table 1—although with σ = 15%—and an initial fee rate

φini = 244.4 bps. Lapses are assessed under the measure P, all other values are computed under

the measure Q.

the GMAB leads to a significant increase in the annual break-even fee for the insurer—from

150.7 to 244.4 bps—despite the reduced volatility. This is because the guarantee may now

be triggered more frequently, not only when the policyholder dies prematurely but also in

case of his survival. This also drives up the policyholder?s incentive to lapse and reenter

in order to increase the value of the guarantee (from 1.45 to 2.58 lapses per 25 policy

years on average); this reflects in the higher fee rate as well. Interestingly, however, the

present value of the insurer’s overall expenses hardly changes (from $22,660 to $22,510). It

appears that while the insurer has to pay policy acquisition expenses more frequently, the

expense amounts per policy lapse (as well as the annually recurring expenses) are lower

than without the GMAB. This is likely because expenses are assessed in proportion to

the VA account value—which tends to be lower in the presence of the GMAB due to the

increased fee rate.

Moreover, our earlier insights regarding the impact of a simple fee-reduction (here: from

φini = 244.4 bps to φred, beginning after nred contract years) extends to the GMAB rider,
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although results change on a quantitative level. For instance, we see from Figure 6(b) that

in the case of nred = 7, the insurer can eliminate all lapse incentives if he reduces the fee

rate far enough; however, Figure 6(b) shows that even in this case the lost fee income will

outweigh his savings in expenses. Therefore, the insurer would not profit from reducing the

fee rate this early into the contract. However, waiting just a few years longer with the fee

reduction turns out to be beneficial to the VA provider. In particular, reducing the fee rate

to around 30 bps after 10 years would eliminate all lapse incentives and allow the insurer

to make a profit of around $3,000. He can further improve his situation by waiting to time

13, and completely eliminating the fee at that time. This would result in the maximum

profit of $3,820. Conversely, if the fee reduction does not occur until later into the contract

(see e.g. the results for the case of nred = 16), lapsing is still optimal in some occasions.

Due to the resulting expenses, this fee strategy turns out to be less desirable for the VA

provider. Overall, we conclude that our key insight extends to the case of living benefits

as well, even though the larger required initial fee rate reduces the potential benefits that

our proposed fee structure can provide.
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